Guidelines for molecular genetic detection of susceptibility to malignant hyperthermia

A. Urwyler¹*, T. Deufel², T. McCarthy³ and S. West⁴ for the European Malignant Hyperthermia Group

¹Departments of Anaesthesia and Research, Kantonsspital, University of Basel, CH-4031 Basel, Switzerland. ²Institute for Clinical Chemistry and Laboratory Diagnosis, University of Jena, D-07743 Jena, Germany. ³Department of Biochemistry, University College Cork, Cork, Republic of Ireland. ⁴Northern Genetics Service, Molecular Genetics Unit, Newcastle upon Tyne NE2 4AA, UK

*Corresponding author

Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic disease triggered by several anaesthetic agents. The in vitro muscle contracture test (IVCT) is the standard test to establish an individual’s risk of susceptibility to MH. Clinical practitioners and geneticists of the European MH Group have agreed on the present guidelines for the detection of MH susceptibility using molecular genetic techniques and/or IVCT to predict the risk of MH.

Br J Anaesth 2001; 86: 283–7

Keywords: complications, malignant hyperthermia; genetic factors, molecular genetics

Accepted for publication: September 12, 2000

Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic disease triggered by commonly used potent inhalation anaesthetics and/or succinylcholine. The in vitro muscle contracture test (IVCT) is the standard test to establish an individual’s risk of susceptibility to MH.¹ The European MH Group has developed a standardized protocol for the IVCT and has initiated and fostered international collaborative molecular genetic studies to investigate the molecular basis of MH. Data from these studies demonstrate that MH displays a high level of locus heterogeneity. Thus, it is not feasible to diagnose MH susceptibility, and, more specifically, to exclude MH risk, on the basis of a simple genetic test alone. However, it is of utmost importance to avoid false MH-negative (MHN) diagnoses because of the potential risk of MH during general anaesthesia for these patients and their offspring. These general obstacles notwithstanding, there may be specific situations where genetic data provide additional diagnostic information or contribute information independent of IVCT. It is the purpose of this document to outline recommended procedures for the potential diagnostic use of such genetic findings depending on the different clinical situations that may arise.

Referrals

The usual route of entry for individuals into MH investigations follows a suspected MH crisis and referral of the patient to an MH Investigation Unit, where diagnostic procedures and genetic counselling should be performed according to Figure 1.

IVCT

An IVCT is performed on the patient or, if the patient is too young or has not survived the anaesthetic event, his or her parents. If MH susceptibility status is confirmed by IVCT, then there is a clinical responsibility to offer the IVCT to the relatives of the index case, assuming autosomal dominant inheritance and starting with first-degree relatives.

Genetic investigations

Mutation analysis

At this stage, molecular genetic testing for causative mutations in the ryanodine receptor gene (RYR1) of the index case could lead to quicker results for the rest of the kinship. An up-to-date list of mutations that have been shown to directly alter RYR1 caffeine or halothane sensitivity is shown in Table 1.

Genetic analysis should be performed in, or only after consultation with an MH Investigation Unit. Once a causative mutation has been detected in the proband or index patient, it can be used to test relatives who have not

²This article is accompanied by Editorial III.
yet been tested by the IVCT. Mutation carriers should consequently be regarded as susceptible to MH. However, family members who do not carry the mutation observed in the pedigree should still undergo IVCT investigation. The reason for such caution is the observation in several pedigrees investigated by members of the European MH Group of discordance between genetic and IVCT results, implicating a second MH susceptibility gene segregating in the kinship.2 3

Segregation analysis

Once the MH status of the extended pedigree (e.g. 10 informative meioses) has been determined by the IVCT, it may be possible to undertake genetic segregation analysis with markers close to known MH susceptibility loci. An up-to-date list of recommended markers and details of genetic modelling compiled by the European Malignant Hyperthermia Group, Genetics Section, is available on the internet (http://www.emhg.org).

Rarely, a single pedigree may be sufficiently large to establish linkage to a candidate locus with a high probability (lod score >3.0). In such a situation the question arises as to whether or not haplotype analysis can be used to assign MH status. Under these circumstances, individuals carrying the high-risk haplotype should be regarded as susceptible to MH even without confirmation by a positive IVCT. The converse is not true, that is, identification of the low-risk haplotype does not equate with MHN status and such individuals should have IVCT determination of their MH status.

In families where linkage to a candidate gene, \(RYR1 \) or another locus, is suggested but not firmly established (i.e. lod score <3.0) haplotype analysis for predictive testing is not appropriate due to the high level of locus heterogeneity in MH. In such families, however, it is desirable to search for unknown mutations in the suggested candidate gene for research purposes.

Failure to reach a lod score of +3.0 in a single family due to the occurrence of a single individual in whom there is recombination between the haplotype and IVCT-deter-

Table 1 List of \(RYR1 \) mutations potentially causative for MH susceptibility (MHS) and central core disease (CCD). Residue numbering within the \(RYR1 \) nucleotide and amino acid sequence corresponds to the human \(RYR1 \) sequence according to Zorzato and colleagues18 (accession number J05200.1), updated according to Zhang and colleagues16 and Phillips and colleagues.19 Functional characterization of the \(RYR1 \) mutations on \(RYR1 \) channel activity have been performed by calcium photometry on myotubes and/or COS-7 or HEK cells transfected with \(RYR1 \) genes bearing the mutations20±24

<table>
<thead>
<tr>
<th>Exon</th>
<th>Mutation position codon change</th>
<th>(RYR1) amino acid change</th>
<th>Functional comparison with wild-type (RYR1)</th>
<th>Phenotype</th>
<th>Estimated incidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>103TGC→CGC</td>
<td>Cys35→Arg</td>
<td>no difference</td>
<td>increased</td>
<td>MHS</td>
<td>one family 4</td>
</tr>
<tr>
<td>6</td>
<td>487CGC→TGC</td>
<td>Arg163→Cys</td>
<td>increased</td>
<td>increased</td>
<td>MHS and/or CCD</td>
<td>2% 5</td>
</tr>
<tr>
<td>9</td>
<td>742GGG→AGG</td>
<td>Gly248→Arg</td>
<td>increased</td>
<td>increased</td>
<td>MHS</td>
<td>one family 6</td>
</tr>
<tr>
<td>11</td>
<td>1021GGG→AGG</td>
<td>Gly341→Arg</td>
<td>increased</td>
<td>increased</td>
<td>MHS</td>
<td>6 – 10% 7</td>
</tr>
<tr>
<td>12</td>
<td>1209ATC→ATG</td>
<td>Ile403→Met</td>
<td>increased</td>
<td>increased</td>
<td>CCD; MHS unknown</td>
<td>one family 5</td>
</tr>
<tr>
<td>14</td>
<td>1565STAT→TCT</td>
<td>Tyr522→Ser</td>
<td>increased</td>
<td>increased</td>
<td>MHS and/or CCD</td>
<td>one family 8</td>
</tr>
<tr>
<td>15</td>
<td>1654CGG→TGG</td>
<td>Arg552→Trp</td>
<td>increased</td>
<td>increased</td>
<td>MHS</td>
<td>one family 9</td>
</tr>
<tr>
<td>17</td>
<td>1840CGC→TGC</td>
<td>Arg614→Cys</td>
<td>increased</td>
<td>increased</td>
<td>MHS</td>
<td>4 – 9% 10</td>
</tr>
<tr>
<td>17</td>
<td>1841CGC→CTC</td>
<td>Arg614→Leu</td>
<td>increased</td>
<td>increased</td>
<td>MHS</td>
<td>2% 11</td>
</tr>
<tr>
<td>39</td>
<td>6487CGC→TGC</td>
<td>Arg2163→Cys</td>
<td>increased</td>
<td>increased</td>
<td>MHS</td>
<td>4% 12</td>
</tr>
<tr>
<td>39</td>
<td>6488CGC→CAC</td>
<td>Arg2163→His</td>
<td>increased</td>
<td>increased</td>
<td>MHS and/or CCD</td>
<td>one family 12</td>
</tr>
<tr>
<td>45</td>
<td>7300GGA→AGA</td>
<td>Gly2434→Arg</td>
<td>increased</td>
<td>increased</td>
<td>MHS and/or CCD</td>
<td>one family 16</td>
</tr>
<tr>
<td>46</td>
<td>7372CGC→TGC</td>
<td>Arg2458→Cys</td>
<td>increased</td>
<td>increased</td>
<td>MHS</td>
<td>4% 17</td>
</tr>
<tr>
<td>46</td>
<td>7373CGC→CAC</td>
<td>Arg2458→His</td>
<td>increased</td>
<td>increased</td>
<td>MHS</td>
<td>4% 17</td>
</tr>
</tbody>
</table>
mined MH status will require closer scrutiny and possible reassessment of the genetic and bioassay results to attempt to resolve the basis of the discordance. For predictive diagnosis in such families, the more conservative estimation, i.e. the higher risk outcome (either the MH susceptibility test result from the IVCT or the high-risk haplotype) should be the basis for the clinical decision.

Appendix

MH Investigation Units in Europe

Austria
Prof. H. Gilly
Klinik für Anästhesie und allgemeine Intensivmedizin der Universität Wien
Spitalgasse 23
A-1090 Wien

Prof. W.W. Lingnau
Univ. Klinik für Anaesthesie und Allgemeine Intensivmedizin
Anichstrasse 35
A-6020 Innsbruck

Belgium
Prof. L. Heytens
Department of Intensive Care
Universitair Ziekenhuis Antwerpen
Wilrijkstraat 10
B-2650 Edegem

Denmark
Dr K. Glahn
The Danish Malignant Hyperthermia Register
Department of Anaesthesia
Herlev University Hospital
DK-2730 Herlev

France
Prof. R. Krivosic-Horber
Département d’Anesthésie Réanimation
Hôpital B
Centre Hospitalier Régional Universitaire
Bd. du Professeur J. Leclercq
P-59037 Lille

Prof. Y. Nivoche
Département d’Anesthésie
Hôpital Robert Debré
48 Bd. Serurier
P-75935 Paris Cedex 19

Germany
Prof. W. Mortier
Klinik für Kinder- und Jugendmedizin der Universität Bochum
St Josefs-Hospital
Alexandrinenstrasse 5
D-44791 Bochum

Priv.-Doz. Dr F. Wappler
University Hospital Eppendorf
Department of Anaesthesiology
Martinistrasse 52
D-20246 Hamburg

Prof. D. Olttolf
Klinik und Poliklinik für Anästhesiologie und Intensivtherapie der Universität Leipzig
Liebigstrasse 20a
D-04103 Leipzig

Dr I. Tzanova
Klinik für Anästhesie
Uniklinik Mainz
Langenbeckstrasse 1
D-55131 Mainz

Prof. F. Lehmann-Horn
Institut für angewandte Physiologie der Universität Ulm
Albert-Einstein-Allee 11
D-89081 Ulm

Dr M. Anetseder
Institut für Anästhesiologie der Universität Würzburg
Josef Schneider Strasse 2
D-97080 Würzburg

Iceland
Prof. S. Sigurdsson
Department of Physiology
University of Iceland
IS-101 Reykjavik

Ireland
Prof. J.J.A. Heffron
Department of Biochemistry
University College
Cork

Italy
Dr V. Tegazzin
Department of Anaesthesiology
Traumatic-Orthopaedic Hospital
Via Facciolati 71
I-35127 Padova

Prof. V. Brancadoro
Institute of Anaesthesiology
Università degli Studi di Napoli Frederico II
Via S. Pansini 5
I-80131 Napoli
References

1 Ording H for the European Malignant Hyperthermia Group. In
vitro contracture test for the diagnosis of malignant hyperthermia
following the protocol of the European MH Group: results of
testing patients surviving fulminant MH and unrelated low-risk
hyperthermia pedigree, between in vitro contracture-test
phenotypes and haplotypes for the MHS1 region on
chromosome 19q12–13.2, comprising the C1840T transition in
3 Adeokun AM, West SP, Ellis FR, et al. The G1021A substitution
in the RYR1 gene does not cosegregate with malignant
hyperthermia susceptibility in a British pedigree. Am J Hum
Genet 1997; 60: 833–41
heterozygous and homozygous individuals with the novel RYR1
mutation Cys35Arg in a large kindred. Anesthesiology 1997; 86:
620–6
5 Quane KA, Healy JM, Keating KE, et al. Mutations in the
ryanodine receptor gene in central core disease and malignant
amino acid substitutions in the coding sequence of the ryanodine
receptor (RYR1) gene in individuals with malignant hyperthermia.
7 Quane KA, Keating KE, Manning BM, et al. Detection of a novel
common mutation in the ryanodine receptor gene in malignant
hyperthermia: implications for diagnosis and heterogeneity
8 Quane KA, Keating KE, Healy JM, et al. Mutation screening of the
RYR1 gene in malignant hyperthermia: detection of a novel Tyr to
Ser mutation in a pedigree with associated central cores.
mutation in the ryanodine receptor gene in an Irish malignant
hyperthermia pedigree: correlation of the IVCT response with
the affected and unaffected haplotypes. J Med Genet 1997; 34:
291–6
arginine 614 in the ryanodine receptor is potentially causative of
mutation at amino acid position 614 in the ryanodine receptor in
12 Manning BM, Quane KA, Ording H, et al. Identification of novel
mutations in the ryanodine-receptor gene (RYR1) in malignant
hyperthermia: genotype–phenotype correlation. Am J Hum Genet
13 Keating KE, Quane KA, Manning BM, et al. Detection of a novel
RYR1 mutation in four malignant hyperthermia pedigrees. Hum
Mol Genet 1994; 3: 1855–8
14 Phillips MS, Khanna VK, De Leon S, Frodis W, Britt BA,
MacLennan DH. The substitution of Arg for Gly2433 in the
human skeletal muscle ryanodine receptor is associated with
15 Brandt A, Schleithoff L, Jurkat-Rott K, Baur C,
Klingler W, Baur C, Lehmann-Horn F. Screening of the ryanodine
receptor gene in 105 malignant hyperthermia families: novel mutations and
concordance with the in vitro contracture test. Hum Mol Genet
1999; 8: 2055–62
16 Zhang Y, Chen HS, Khanna VK, et al. A mutation in the human
ryanodine receptor gene associated with central core disease.
Nature Genet 1993; 5: 46–50
17 Manning BM, Quane KA, Lynch PJ, et al. Novel mutations at a
CpG dinucleotide in the ryanodine receptor in malignant
hyperthermia. Hum Mutat 1998; 11: 45–50
encoding human and rabbit forms of the Ca2+ release channel
(ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J
Biol Chem 1990; 265: 2244–56
19 Phillips MS, Fujiy J, Khanna VK, et al. The structural organization
of the human skeletal muscle ryanodine receptor (RYR1) gene.
Genomics 1996; 34: 24–41
Arg615→Cys in the Ca2+ release channel of skeletal
sarcoplasmic reticulum is responsible for hypersensitivity to
caffeine and halothane in malignant hyperthermia. J Biol Chem
1994; 269: 9413–15
Ca2+ transients in COS-7 cells transfected with the cDNA
encoding skeletal-muscle ryanodine receptor carrying a mutation

22 Tong J, Oyamada H, Demaurex N, Grinstein S, McCarthy TV, MacLennan DH. Caffeine and halothane sensitivity of intracellular Ca\(^{2+}\) release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. *J Biol Chem* 1997; 272: 26332–9
